
7.7-Segment_Display

Introduction
In this lesson, we try to drive a 7-segment display to show a figure from 0 to 9 and A

to F.

Hardware Required
 1 * Raspberry Pi

 1 * T-Extension Board

 1 * Seven-segment display

 1 * 40-pin Cable

 Several Jumper Wires

 1 * Resistor(220Ω)

 1 * Breadboard

 1 * 74HC595

Principle

7-Segment Display
A 7-segment display is a LED module composed of 8 LEDs. 7 of the LEDs are for

segments of one digit (shown as A to G below) and the other LED is for the decimal

point (shown as DP below).

A common-anode seven-segment display:

7.7-Segment_Display

A common-cathode seven-segment display

For saving the pin number for controlling a seven-segment display, a shift register is

used as a serial-to-parallel converter to send signals to the display. That is, we serially

send 8 bits of data, which represents the way we want to turn on the display, by one

signal pin into the shift register and the register can output the corresponding data

pattern to its 8 output pins at once (parallel).

Display Codes

To help you get to know how 7-segment displays(Common Cathode) display

Numbers, we have drawn the following table. Numbers are the number 0-F displayed

on the 7-segment display; (DP) GFEDCBA refers to the corresponding LED set to 0

or 1, For example, 00111111 means that DP and G are set to 0, while others are set to

1.

Therefore, the number 0 is displayed on the 7-segment display, while HEX Code

corresponds to hexadecimal number.

Numbers
Common Cathode

Numbers
Common Cathode

(DP)GFEDCBA Hex Code (DP)GFEDCBA Hex Code

7.7-Segment_Display

0 00111111 0x3f A 01110111 0x77

1 00000110 0x06 B 01111100 0x7c

2 01011011 0x5b C 00111001 0x39

3 01001111 0x4f D 01011110 0x5e

4 01100110 0x66 E 01111001 0x79

5 01101101 0x6d F 01110001 0x71

6 01111101 0x7d

7 00000111 0x07

8 01111111 0x7f

9 01101111 0x6f

74HC595
The 74HC595 consists of an 8−bit shift register and a

storage register with three−state parallel outputs. It converts

serial input into parallel output so that you can save IO ports

of an MCU. The 74HC595 is widely used to indicate

multipath LEDs and drive multi-bit segment displays.

"Three-state" refers to the fact that you can set the output

pins as either high, low or "high impedance." With data latching, the instant output

will not be affected during the shifting; with data output, you can cascade 74HC595

more easily.

The chip contains eight pins that we can use for output, each of which is associated

with a bit in the register. In the case of the 74HC595 IC, we refer to these as QA

through to QH. In order to write to these outputs via the Arduino, we have to send a

binary value to the shift register, and from that number the shift register can figure out

which outputs to use. For example, if we sent the binary value 10100010, the pins

7.7-Segment_Display

highlighted in green in the image below would be active and the ones highlighted in

red would be inactive.

Pins of 74HC595 and their functions:

Q0-Q7: 8-bit parallel data output pins, able to control 8 LEDs or 8 pins of 7-segment

display directly.

Q7 ’ : Series output pin, connected to DS of another 74HC595 to connect multiple

74HC595s in series

MR: Reset pin, active at low level;

SHcp: Time sequence input of shift register. On the rising edge, the data in shift

register moves successively one bit, i.e. data in Q1 moves to Q2, and so forth. While

on the falling edge, the data in shift register remain unchanged.

STcp: Time sequence input of storage register. On the rising edge, data in the shift

register moves into memory register.

CE: Output enable pin, active at low level.

DS: Serial data input pin

VCC: Positive supply voltage

GND: Ground

Schematic Diagram
Connect pin ST_CP of 74HC595 to Raspberry Pi GPIO18, SH_CP to GPIO27, DS to

GPIO17, parallel output ports to 8 segments of the LED segment display. Input data in

DS pin to shift register when SH_CP (the clock input of the shift register) is at the

rising edge, and to the memory register when ST_CP (the clock input of the memory)

is at the rising edge. Then you can control the states of SH_CP and ST_CP via the

Raspberry Pi GPIOs to transform serial data input into parallel data output so as to

save Raspberry Pi GPIOs and drive the display.

T-Board Name physical wiringPi BCM

GPIO17 Pin 11 0 17

GPIO18 Pin 12 1 18

GPIO27 Pin 13 2 27

7.7-Segment_Display

Experimental Procedures

Step 1: Build the circuit.

For C Language Users

Step 2: Get into the folder of the code.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/C/7.7-Segment_Display

Step 3: Compile.

gcc 7.7-Segment_Display.c -o 7-Segment_Display.out -lwiringPi

7.7-Segment_Display

Step 4: Run the executable file above.

sudo ./7-Segment_Display.out

After the code runs, you'll see the 7-segment display display 0-9, A-F.

Code

#include <wiringPi.h>

#include <stdio.h>

//use the 74HC595595

#define SDI 0 //serial data input

#define RCLK 1 //memory clock input(STCP)

#define SRCLK 2 //shift register clock input(SHCP)

//A segment code array from 0 to F in Hexadecimal (Common cathode).

unsigned char SegCode[16] =

{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x

71};

//0011 1111 0000 0110 01011010 ...

//Set ds, st_cp, sh_cp three pins to OUTPUT, and the initial state as 0.

void init(void){ //init all

pinMode(SDI, OUTPUT);

pinMode(RCLK, OUTPUT);

pinMode(SRCLK, OUTPUT);

digitalWrite(SDI, 0);

digitalWrite(RCLK, 0);

digitalWrite(SRCLK, 0);

}

//To assign 8 bit value to 74HC595’s shift register.

void hc595_shift(unsigned char dat){

7.7-Segment_Display

int i;

for(i=0;i<8;i++){

digitalWrite(SDI, 0x80 & (dat << i));

digitalWrite(SRCLK, 1);

delay(1);

digitalWrite(SRCLK, 0);

}

digitalWrite(RCLK, 1);

delay(1);

digitalWrite(RCLK, 0);

}

//In this for loop, we use "%1X" to output i as a hexadecimal number. Apply i to find

the corresponding segment code in the SegCode[] array

//employ hc595_shift() to pass the SegCode into 74HC595's shift register.

int main(void){

int i;

if(wiringPiSetup() == -1){ //when initialize wiring failed, print messageto screen

printf("setup wiringPi failed !");

return 1;

}

init();

while(1){

for(i=0;i<16;i++){

printf("Print %1X on Segment\n", i); // %X means hex output

hc595_shift(SegCode[i]);

7.7-Segment_Display

delay(500);

}

}

return 0;

}

Code Explanation

unsigned char SegCode[16] =

{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x

71};

A segment code array from 0 to F in Hexadecimal (Common cathode).

void init(void){ //init all

pinMode(SDI, OUTPUT);

pinMode(RCLK, OUTPUT);

pinMode(SRCLK, OUTPUT);

digitalWrite(SDI, 0);

digitalWrite(RCLK, 0);

digitalWrite(SRCLK, 0);

}

Set ds, st_cp, sh_cp three pins to OUTPUT, and the initial state as 0.

void hc595_shift(unsigned char dat){}

To assign 8 bit value to 74HC595’s shift register.

digitalWrite(SDI, 0x80 & (dat << i));

Assign the dat data to SDI(DS) by bits. Here we assume dat=0x3f(0011 1111,

wheni=2, 0x3f will shift left(<<) 2 bits. 1111 1100 (0x3f << 2) & 1000 0000 (0x80)

= 1000 0000, is true.

digitalWrite(SRCLK, 1);

7.7-Segment_Display

SRCLK's initial value was set to 0, and here it's set to 1, which is to generate a

rising edge pulse, then shift the DS date to shift register.

digitalWrite(RCLK, 1);

RCLK's initial value was set to 0, and here it's set to 1, which is to generate a

rising edge, then shift data from shift register to storage register.

while(1){

for(i=0;i<16;i++){

printf("Print %1X on Segment\n", i); // %X means hex output

hc595_shift(SegCode[i]);

delay(500);

}

}

In this for loop, we use "%1X" to output i as a hexadecimal number. Apply i to

find the corresponding segment code in the SegCode[] array, and employ

hc595_shift() to pass the SegCode into 74HC595's shift register.

For Python Language Users

Step 2: Get into the folder of the code.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/Python

Step 3: Run.

sudo python3 7.7-Segment_Display.py

After the code runs, you'll see the 7-segment display display 0-9, A-F.

Code

The code here is for Python3, if you need for Python2, please open the code with the

suffix py2 in the attachment.

#!/usr/bin/env python3

import RPi.GPIO as GPIO

7.7-Segment_Display

import time

Set up pins

SDI = 17

RCLK = 18

SRCLK = 27

Define a segment code from 0 to F in Hexadecimal

Common cathode

segCode =

[0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x

71]

def setup():

GPIO.setmode(GPIO.BCM)

GPIO.setup(SDI, GPIO.OUT, initial=GPIO.LOW)

GPIO.setup(RCLK, GPIO.OUT, initial=GPIO.LOW)

GPIO.setup(SRCLK, GPIO.OUT, initial=GPIO.LOW)

Shift the data to 74HC595

def hc595_shift(dat):

for bit in range(0, 8):

GPIO.output(SDI, 0x80 & (dat << bit))

GPIO.output(SRCLK, GPIO.HIGH)

time.sleep(0.001)

GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)

time.sleep(0.001)

GPIO.output(RCLK, GPIO.LOW)

7.7-Segment_Display

def main():

while True:

Shift the code one by one from segCode list

for code in segCode:

hc595_shift(code)

print ("segCode[%s]: 0x%02X"%(segCode.index(code), code)) #

%02X means double digit HEX to print

time.sleep(0.5)

def destroy():

GPIO.cleanup()

if __name__ == '__main__':

setup()

try:

main()

except KeyboardInterrupt:

destroy()

Code Explanation

segCode =

[0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x

71]

A segment code array from 0 to F in Hexadecimal (Common cathode).

def setup():

GPIO.setmode(GPIO.BCM)

GPIO.setup(SDI, GPIO.OUT, initial=GPIO.LOW)

GPIO.setup(RCLK, GPIO.OUT, initial=GPIO.LOW)

7.7-Segment_Display

GPIO.setup(SRCLK, GPIO.OUT, initial=GPIO.LOW)

Set ds, st_cp, sh_cp three pins to output and the initial state as low level.

GPIO.output(SDI, 0x80 & (dat << bit))

Assign the dat data to SDI(DS) by bits. Here we assume dat=0x3f(0011 1111,

when bit=2, 0x3f will shift right(<<) 2 bits. 1111 1100 (0x3f << 2) & 1000 0000

(0x80) = 1000 0000, is true.

GPIO.output(SRCLK, GPIO.HIGH)

SRCLK's initial value was set to LOW, and here it's set to HIGH, which is to

generate a rising edge pulse, then shift the DS date to shift register.

GPIO.output(RCLK, GPIO.HIGH)

RCLK's initial value was set to LOW, and here it's set to HIGH, which is to

generate a rising edge, then shift data from shift register to storage register.

Note: The hexadecimal format of number 0~15 are (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,

C, D,E, F)

Phenomenon Picture

	Introduction
	Hardware Required
	For C Language Users

	Step 2: Get into the folder of the code.
	Step 3: Compile.
	Step 4: Run the executable file above.
	Code
	For Python Language Users

	Step 2: Get into the folder of the code.
	Step 3: Run.
	Code
	destroy()
	Phenomenon Picture

